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SUMMARY

A methodology for local solution-adaptive mesh refinement in computational fluid dynamics (CFD) using cell-
level and global kinetic energy balances is formulated and tested. Results are presented for two two-dimensional
steady incompressible laminar benchmark problems: a lid-driven cavity (Reynolds numberRe�1000) and a
backward-facing step (Re�400). It is demonstrated that local kinetic energy imbalance correlates with local
solution accuracy, that normalized global imbalance is an appropriate criterion for halting mesh refinement and
that a specified level of accuracy is realized at lower computational effort using local refinement compared with a
uniform finer mesh.
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1. INTRODUCTION

In diverse applications, three-dimensional time-dependent computational fluid dynamics (CFD) is
evolving from research status to engineering tool. In the automotive industry, for example, CFD
analysis of in-cylinder flow and combustion processes in reciprocating internal combustion (IC)
engines represents an application at the frontier between research and practicable design tool.1–3

Further progress in the modelling of such complex phenomena demands that numerical accuracy be
isolated from physical submodel performance (e.g. turbulence, turbulent combustion and fuel spray
models), quantified and controlled. Low-order (first- or second-order) numerical methods generally
are selected in these applications for their robustness and computational efficiency. This robustness
makes it imperative that there be a means of quantifying the degree to which computed results are
faithful to the underlying (modelled) partial differential equations. Also in the event that accuracy is
not satisfactory, efficient mechanisms must be available for improving it. Error estimation and
reduction should be transparent once a small number of controlling parameters (e.g. maximum
acceptable error level and a measure of maximum acceptable CPU time or cost) have been specified.
Thus measures of numerical accuracy and strategies for improved accuracy remain a major theme in
the CFD literature.3–5

Here the focus is on automated solution-adaptive local mesh refinement where mesh density is
varied in space and (in time-dependent computations) in time to maintain a specified level of
accuracy. Issues include (i) choice of numerical algorithm and data structure, (ii) formulation of local
error estimators to establish the spatial distribution of grid points or cells and (iii) formulation of
global error measures for determining when the solution is ‘good enough’. Our goal has been to
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develop an approach that is suited to three-dimensional time-dependent flows in complex geometric
configurations including moving boundaries. Here the methodology is evaluated in two two-
dimensional steady laminar flow problems: a lid-driven cavity and a backward-facing step.

The basis for the present adaptive mesh refinement scheme is local and global balances of
quantities that are not explicitly conserved in the construction of the numerical discretization. The
advantages of this approach are several. First, numerical accuracy is assessed from results computed
on a single computational mesh: no explicit estimate of the converged solution is required. (Two time
levels are needed in transient calculations.) Second, it provides a suitable basis for understanding and
controlling numerical error in large-scale engineering computations on coarse meshes. Third, this
methodology is compatible with any numerical method (finite difference, finite volume or finite
element) using any difference approximations or basis functions. Finally, it is computationally lean:
the CPU time required to compute cell-level and global imbalances is less than 1% of the CFD
calculation for the pressure based finite volume method employed here.

2. BACKGROUND

We are concerned principally with finite difference and finite volume formulations where mesh
density is varied to control local solution accuracy (h-refinement). This is in contrast with the use of
higher order basis functions (p-refinement) that is more prevalent in finite element methods.6 Moreover,
we are interested in mesh refinement via introduction of new grid points (‘mesh enrichment’) rather
than via redistribution of grid points (‘mesh movement’). We restrict our attention to body-fitted
meshes where solid boundaries coincide with cell faces. This is in contrast with Cartesian mesh
approaches for irregular domains that have been presented, for example, byPemberet al.7

The current scheme bears some similarity to the adaptive mesh refinement algorithm described by
Bell et al.8 for block-structured grids. There the emphasis was a hierarchical data structure for
embedded regular meshes. Here the focus is the selection and evaluation of error estimators; the
current methodology is implemented on unstructured meshes. Richardson extrapolation9 and solution
gradients were used as error estimators in Reference 8 and related work.7

2.1. Data structure

Data structures allowing arbitrary connectivity (unstructured meshes) provide a natural framework
for incorporating local refinement. Tetrahedral elements are particularly well suited: it is
straightforward to introduce or delete grid points, to generate updated connectivity tables and to
map dependent variables from one mesh to another.10 Hexahedral (‘brick’) elements are more
difficult. Here transition regions can be introduced as in Figure 1(a), or algorithms allowing cell
splitting can be employed (Figure 1(b)). The former approach maintains a conventional two-cells-per
face structure, but transition zone logic becomes cumbersome in three spatial dimensions; cell
distortion can also be a problem. Cell splitting requires modifications to conventional data structures,
but remains tractable in unstructured codes where pointers (indirect addressing) have already been
implemented; cell distortion is controlled by the quality of the parent mesh. A cell-splitting approach
for hexahedral elements has been adopted here.

2.2. Local error estimators

Numerical accuracy assessment (and reporting) for engineering applications has generally been
limited to heuristic mesh refinement exercises in cases where it has been evaluated at all.
Computations are repeated on progressively finer or coarser meshes until a local or global quantity of
interest varies little with mesh density. No meaningful quantitative error bounds are established,
making it difficult to assess the reliability of the solution.
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Systematic error analysis using Taylor series approximation and Richardson extrapolation provides
a sound basis for error estimation in CFD.4,8,9 In Reference 4, for example, a ‘grid convergence
index’ (GCI) is proposed for the uniform reporting of mesh refinement results. This requires a
minimum of two computations on meshes of different densities. Essentially the GCI relates results
from a mesh refinement test to the results that one would expect from grid doubling for a second-
order method. Alternative approaches to error estimation include residual-based local and global
estimators for finite elements.5,6

The formal basis for error quantification and control strategies demands that one operate within
their asymptotic convergence limits. For example, the leading-order discretization error term in a
Taylor series analysis provides a meaningful estimate of convergence rate only in the limit as the grid
spacing approaches zero. One cannot knowa priori whether a given mesh and numerical scheme lie
within the asymptotic radius of convergence. In Reference 3, it was demonstrated that mesh
refinement and Taylor series extrapolation resulted in misleading estimates of converged solutions
even for a relatively simple transient test problem using axisymmetric, orthogonal grids. In practical
three-dimensional time-dependent flows, extrapolating to the grid-independent converged solution is
more problematic: one can rarely afford to compute on meshes within the radius of convergence.

The difficulty of grid generation and the magnitude of computational resources required for typical
industrial flow computations preclude the routine use of grid sensitivity tests and multiple-mesh
solutions. For example, a single transient run through intake, compression and combustion on a
300,000-element production port and-cylinder IC engine configuration can require of the order of
100–200 Cray Y-MP hours. Single-run assessments of numerical accuracy and automated accuracy
enhancement strategies are needed.

2.3. Global convergence criteria

For schemes where an explicit estimate of the converged solution is available (e.g. via
extrapolation from solutions obtained on two different meshes), a natural choice for error estimator is
the difference between one or more computed dependent variables and their estimated grid-
independent converged values. Refinement might continue until the computed dependent variable(s)
in every cell lie within a specified tolerance of their converged value(s), and uniform error
distribution is achieved. Spatial gradients of pressure or other quantities have been used to control
mesh density in applications including flows with shocks or reaction fronts. In this case grid points

Figure 1. Local mesh refinement in hexahedral element meshes. Two-dimensional examples are shown for clarity. (a)
Transition region approach. (b) Cell-splitting approach: cells labelleda, b, c, andd illustrate supplementary refinement rules

(see text)
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are added or clustered in regions of steep spatial gradients of the specified dependent variables. Here
refinement might continue until a gradient-based length scale is much larger than the local grid
spacing.

In Reference 3, global kinetic energy imbalance was reported to be a sensitive indicator of
numerical accuracy. The relationship between local solution accuracy and global imbalance was also
demonstrated in Reference 3. Kinetic energy is a physically meaningful quantity in many applications
of interest. For in-cylinder flows, for example, the kinetic energy of the induction-generated large-
scale flow structure provides a ‘reservoir’ of energy that can be converted into turbulence late during
compression. High turbulence translates to more complete mixing and to faster burn. Moreover, shear
production via mean velocity gradients is a dominant mechanism for turbulence generation in many
internal flow configurations. Length and time scales in physical submodels for turbulent mixing,
combustion and fuel sprays are tied to the turbulence scales which in turn are established by the mean
flow structure and energy.

Principal issues for this kinetic-energy-imbalance-based error estimator are its generality, and the
relationship between kinetic energy imbalance and other physical quantities of interest. These are
discussed in Section 7.

3. BASE FLOW SOLVER

The flow solver accepts an unstructured mesh of hexahedral ‘brick’ elements. Dependent variables
are located at cell centres, and each grid point or node is shared by an arbitrary number of elements.
The principal equations solved are the Favre-averaged equations for momentum, pressure
(continuity), internal energy, mass fraction, turbulence kinetic energy and the viscous dissipation
rate of turbulence kinetic energy (the last two for turbulent flows). A pressure-based algorithm
patterned after SIMPLE11 is adopted, where pressure is computed by enforcing continuity and density
is specified via an equation of state. Centred second-order differences are used for diffusion terms,
while a blend of upwind and central differencing is implemented for the convective terms in the
momentum equations. For steady flow problems there is provision for time marching to the steady
solution or for iterating using under relaxation.

For the steady, constant-property, laminar flows that are the subject of the present investigation, the
continuity and momentum equations reduce to
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�
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: �2�

HereUi refers to theith Cartesian component of velocity,p is the pressure,tji is the viscous stress
tensor andr andm are the constant fluid density and viscosity respectively. Summation is implied
over repeated italic indices.

By design of the finite volume method, mass and linear momentum are conserved for each cell in
the discrete formulation. Angular momentum components, mean kinetic energy and other quadratic
and higher-order quantities are not conserved. For anyconvergentdiscretization,12 however, these
quantities should also be conserved in the limit as the grid spacing approaches zero, i.e. in the limit of
a grid-independent converged solution. Thus these non-conserved quantities are potential candidates
for assessing numerical inaccuracy.
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4. REFINEMENT STRATEGY

4.1. Kinetic energy budget

Balance equations for linear momentum, angular momentum, mean flow kinetic energy and
turbulence kinetic energy can be found in References 3 and 13. There the equations have been
derived in a form suitable for time-dependent compressible turbulent flows in regions with moving
boundaries.

For clarity we restrict attention to steady, laminar, incompressible flows; this is not a fundamental
limitation of the methodology. In laminar flow the turbulence kinetic energy is equal to zero and we
drop the distinction between mean and instantaneous quantities. The total kinetic energy in an
arbitrary volumeV is ^K �

�

V
1
2 rUjUjdv. The kinetic energy budget for an arbitrary volumeV with

bounding surfaceS is derived by taking the inner product of the momentum equation in (1) with the
velocity vector, integrating overV and manipulating the result to obtain3,13

_

^Knum �

�

S

1
2rUjUjUldsl �

�

S
pUjdsj ÿ

�

S
tjiUjdsi �

�

V
tji�@Uj=@xi�dv: �3�

Here dsj is the jth component of the outward-pointing area element vector. The term_

^Knum is the
numerical imbalance in kinetic energy for the volumeV resulting from replacing partial differential
equations (1) and (2) with difference approximations.

Equation (3) expresses the budget of kinetic energy over a domainV that can vary from a single
computational cell to the entire computational domain. From left to right the terms on the right-hand
side of equation (3) represent the rate at which kinetic energy is advected out ofV throughS(FLUX),
the rate at which pressure forces onSextract kinetic energy fromV (PRES), the rate at which viscous
stresses overSextract kinetic energy fromV (SHEAR) and the rate at which viscous stresses convert
kinetic energy to sensible energy (heat) over the interior of the volumeV (viscous dissipation,DISS).
This budget can be written symbolically as

_

^Knum � FLUX � PRES � SHEAR � DISS: �4�

The cell-level kinetic energy imbalance will be denoted by_

^Knum, cand the global imbalance over the
entire computational domain by_^Knum, g. Additional terms arise in unsteady compressible turbulent
flows.3,13

4.2. Implementation details

In the event that a cell’s error estimator (here_

^Knum, c) exceeds a threshold value, the ‘parent’ cell is
split into several ‘child’ cells. Isotropic cell splitting proceeds by introducing one new node at the
centroid of the cell volume and one new node at the centre of each face and edge of the parent cell
(Figure 1(b)). Thus for every refined parent cell there arenc child cells,

nc � 2D
; �5�

whereD is the number of spatial dimensions (D� 1, 2, or 3).
Parameters are introduced to establish the average rate at which computational cells proliferate

during refinement and to establish global convergence criteria for halting refinement. A ‘growth rate’
Rc is introduced as the ratio of the number of cells after one refinement event,Nc, after to the number
of cells before the event,Nc, before. This ratio can be expressed as a function of the number of child
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cells,nc (equation (5)), created from each parent and of the fraction of cells split at each refinement
level, f. Here the cells to be split are thef �Nc, beforecells having the highest cell-level kinetic energy
imbalance magnitudej _^Knum; cj. If nc is the same for all parent cells (as in the present scheme), then

Rc �
Nc; after

Nc; before
� 1 � �nc ÿ 1� f : �6�

In practice,f is selected to control the growth rateRc according to equation (6) withnc from equation
(5). Because the growth rate is limited, a poor initial mesh might result in persistent errors in transient
calculations.

There is no inherent restriction on the number of cells that share a common face. Here this number
has been limited to 2D71 to make the data structure more efficient. For instance, in the two-
dimensional example of Figure 1(b), if cella is tagged for splitting, then all cellsb will also be split
regardless of the value of cellb’s error estimator. In addition, any cell that lies between two tagged
cells (cellsc in Figure 1(b)) or any cell that lies between a tagged cell and a boundary (cellsd in
Figure 1(b)) is also tagged for refinement. These supplementary rules are intended to maintain
smooth transitions between refined and unrefined regions for cells whose error estimators are close to
the threshold value.

A global convergence criterion or ‘stopping criterion’ is established by applying the kinetic energy
balance of equation (4) to the entire computational domain. This is equivalent to summing the cell-
level balances over all computational cells. The result is a measure of the global numerical imbalance
in kinetic energy,^K_ num, g. A physically meaningful convergence criterion is that the numerical loss in
kinetic energy should be a small fractionq of a reference kinetic energy rate^K_ ref, where the latter can
be the rate of kinetic energy supplied to the system or the physical dissipation rateDISS:

IMBALg � j

_

^Knum; g=
_

^K ref j < q: �7�

Parameter values adopted here aref� 1
3 and q� 0�05. The former corresponds (nominally) to a

doubling of the number of cells with each refinement in two spatial dimensions (D� 2). The latter
means that not more than 5% of the reference kinetic energy should be lost numerically.

In summary, solution-adaptive local mesh refinement proceeds in five steps. 1) Set global control
parameters: the growth rateRc or f (equation (6)) and the maximum acceptable errorq (equation (7)).
2) Compute a numerical solution on the current mesh. 3) From the current (converged or partially
converged) solution, compute the cell-level error estimator^K_ num, c (equation (4)) and normalized
global imbalanceIMBALg (equation (7)). 4) Refine the mesh based on the error estimator and
supplementary cell connectivity rules. 5) Repeat steps 2)–4) until global convergence is satisfied
(equation (7)) or auxiliary limits (total number of cells, CPU time) are reached.

5. TEST CASES

5.1. Lid-driven cavity

This configuration (Figure 2(a)) has been the subject of exhaustive numerical studies.14,15

Dimensional parameters for the two-dimensional problem are cavity dimensionsh6h, wall speed
Uw and fluid propertiesr and m. Here computations have been done for a Reynolds number
Re� rUwh=m� 1000. The solution proceeds iteratively to steady state using underrelaxation starting
from a quiescent field. Computations have been performed on a three-dimensional mesh with a single
cell of spanw in thez-direction. Residuals were normalized withrUwwh for the continuity equation
andrU2

wwh for the momentum equations. The solution is considered to be converged in the iterative
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steady state sense when normalized residuals are smaller than 1074. Alternatively, one might monitor
convergence ofIMBAL directly; here we have opted to retain the standard practice for iterative
pressure-based solution procedures.

The stopping criterion is taken to be the global rate of kinetic energy loss normalized by the rate of
kinetic energy input at the driven wall,SHEAR:

_

^K ref � jSHEARj �

�

�

�

�

�

driven wall
tjiUjdsi

�

�

�

�

: �8�

Because there is no flux across solid boundaries (FLUX� 0) and no component of wall velocity
normal to the walls (PRES� 0), the global kinetic energy imbalance over the entire computational
domain reduces to^K_ num, g�SHEARg�DISSg (equation (4)). Thus normalizing by the rate of energy
input at the driven wall is essentially equivalent to normalizing by the rate of viscous dissipation:
SHEAR� 7DISSin the limit of a grid-independent converged solution.

Benchmark velocity profiles generated byGhiaet al.14 (1296129 mesh, central differencing) are
found to be indistinguishable from the present results computed on a uniform 1606160 mesh using
central differencing. For convenience the latter computations are referred to as the benchmark in
Section 6.

5.2. Backward-facing step

This two-dimensional configuration (Figure 2(b)) has likewise been the subject of considerable
attention.15–18 Dimensional parameters are channel heighthc, step heighths� hc=2, length of
computational domain,L, inlet velocity profileu(y) and fluid propertiesr andm. The velocity scale is
taken to be the area-averaged inlet velocity�Ub �

�

inlet u�y�dy=�hc ÿ hs�. Here the Reynolds number is
Re � r �Ubhc=m � 400.

A parabolic velocity profile is specified atx� 0 (Figure 2(b)) and a uniform pressure across the
outlet. The stability of this two-dimensional laminar flow has been established recently for Reynolds
numbers up to 800.18 We were able to obtain steady state solutions atRe� 800 only via time-
consuming transient marching to the steady solution. Thus we have selected a lower Reynolds
number of 400 to expedite our numerical tests. For the backward-facing step the mesh expands in the
streamwise (x) direction even for regular mesh cases. Residuals were normalized withr �Ubwhc for the
continuity equation andr �U2

b whc for the momentum equations, wherew is the channel width in thez-
direction.

Figure 2. Computational configurations: (a) lid-driven cavity; (b) backward-facing step
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In this case the rate of numerical kinetic energy loss has been normalized by the net rate of kinetic
energy influx (inlet flux minus outlet flux). For comparison we also report results normalized by the
viscous dissipation rate:

_

^K ref ; 1 �

�

�

�

�

�

S

1
2
rUjUjUldsl

�

�

�

�

;
_

^K ref ; 2 �

�

�

�

�

�

V
tji�@Uj=@xi�dv

�

�

�

�

: �9�

These yield comparable numerical values as well as trends, sinceSHEARandPRESare small for this
configuration. (The only non-zero contributions to these two terms are over the inflow and outflow
boundaries.) We adopt as the benchmark solution our most accurate numerical solution: 800680
cells with central differencing.

6. RESULTS

The run matrix is summarized inTable I and results are given inTables II and III . There ‘LDC’
designates lid-driven cavity cases while ‘BFS’ denotes backward-facing step runs; an ‘R’ in the case
name denotes local refinement. Two sets of computations are reported for each configuration, one

Table I. Run summary. ‘LDC’ designates lid driven cavity runs, and ‘BFS’
denotes backward-facing-step runs. An ‘R’ in the case name indicates local
refinement and the final ‘U’ or ‘C’ distinguishes upwind from central
differencing. Nc is the total number of computational cells. Refinement is

controlled by the parameterf defined by equation (6); heref� 1
3

Case Nc Convective
differencing

Description

LDC1U 400 Upwind 20620 uniform
LDC2U 1600 Upwind 40640 uniform
LDC3U 6400 Upwind 80680 uniform
LDC4U 25600 Upwind 1606160 uniform
LDCR1U 838 Upwind Refinement 1, from LDC1U
LDCR2U 1756 Upwind Refinement 2, from LDCR1U
LDCR3U 3778 Upwind Refinement 3, from LDCR2U

LDC1C 400 Central 20620 uniform
LDC2C 1600 Central 40640 uniform
LDC3C 6400 Central 80680 uniform
LDC4C 25600 Central 1606160 uniform (benchmark)

LDCR1C 832 Central Refinement 1, from LDC1C
LDCR2C 1912 Central Refinement 2, from LDCR1C
LDCR3C 4339 Central Refinement 3, from LDCR2C

BFS1U 1000 Upwind 100610 regular
BFS2U 4000 Upwind 200620 regular
BFS3U 16000 Upwind 400640 regular
BFS4U 64000 Upwind 800680 regular
BFSR1U 1981 Upwind Refinement 1, from BFS1U
BFSR2U 4012 Upwind Refinement 2, from BFSR1U

BFS1C 1000 Central 100610 regular
BFS2C 4000 Central 200620 regular
BFS3C 16000 Central 400640 regular
BFS4C 64000 Central 800680 regular (benchmark)
BFSR1C 2077 Central Refinement 1, from BFS1C
BFSR2C 4693 Central Refinement 2, from BFSRlC
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using upwind differencing and the other central differencing (with deferred correction) for convective
terms in the momentum equations. Underrelaxation factors for pressure and momentum areap� 0�3
andau� 0�7 respectively. No attempt has been made to optimizeap andau. The number of cells does
not exactly double with each refinement (e.g. BFSR2C versus BFSR1C) because of the
supplementary refinement rules imposed to ensure mesh quality. Here ‘doubling’ the mesh
corresponds to a refinement ratio of

���

2
p

(� 41%) in each direction.
For evaluation purposes the CPU time and iteration counts reported inTables II and IIIreflect the

computational effort for that mesh starting from quiescent initial conditions. In applications we begin
with a coarse mesh and refine periodically, computing the error estimator based on a partially
converged solution and taking the latest available solution as the initial condition for each successive
refinement.

6.1. Lid-driven cavity

Results for four uniform meshes and for six meshes with local refinement are presented in Plate 1,
Figures 3 and 4and Table II. The benchmark (‘exact’) velocity field (LDC4C) is denoted by
Ue � (Ue, x, Ue, y). Local and global deviations between computed and benchmark velocities are
defined as

DU �i�
e;c � f��U �i�

x ÿ U �i�
e;x�

2
� �U �i�

y ÿ U �i�
e;y�

2
�=�U �i�2

e;x � U �i�2
e;y 2�g1=2

�for cell i�;

DUe;g �
1

Nc

P

Nc

i�1
DU �i�

e;c �global�:
�10�

Plate 1 illustrates the significance of the choice of error estimator. The cell-level kinetic energy
imbalance (Plate 1(a)) is the error estimator adopted here. This error distribution is strongly peaked at
large magnitudes of the imbalance; that is, a small number of cells have very large imbalance
magnitudes. Imbalance magnitude ranges from 36 10713 to 361078 in Plate 1(a) with the high-
error cells concentrated in the upper corners near the intersection of fixed and driven walls.
Normalizing the cell-level kinetic energy imbalance by the cell level kinetic energy^Kc (Plate 1(b))
emphasizes regions where the flow has little energy locally, including the recirculation zones in the
two lower corners of the cavity and the centre of the main vortex. A velocity gradient-based error
estimator (Plate 1(c)) highlights the upper and right-hand walls, consistent with the kinetic energy
imbalance. In addition, it flags the separation streamline for the recirculation zones in the two lower
corners. Normalized departure from the benchmark solution (Plate 1(d)) marks essentially the same
low-energy regions as the normalized kinetic energy imbalance of Plate 1(b).

Mesh distributions for three levels of refinement starting from LDC1U are shown inFigures 3(a)–
3(c). With each successive refinement the error becomes more uniform. By the third level
(LDCR3U), only a few isolated patches of high error remain along the driven wall near the corners.
With central differencing, a different distribution of cells is tagged for refinement at each level,
resulting in the third-level mesh pattern of Figure 3(d). For both differencing schemes, refinement is
concentrated close to the driven wall and down the right-hand (x� h) wall, with ‘fingers’ extending
from the right-hand wall into the body of the flow. Central differencing yields more refinement
adjacent to the lower and left-hand fixed walls.

Table II reports global error estimates and computational effort for lid driven cavity cases. The
global rate of numerical loss of kinetic energy,_^Knum, g (column (b)), generally decreases with
increasing spatial resolution and with higher-order differencing. A sensible normalization is
important: the rate at which kinetic energy is supplied by the driven wall,_

^Kref � jSHEARj, increases
as the grid is refined in the vicinity of the wall. Thus there is a higher rate of supply of kinetic energy
to the system, a higher rate of physical dissipation of kinetic energy and potentially a higher rate of
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numerical kinetic energy loss as the mesh is refined. It is the fraction of available energy that is lost
numerically that is relevant for assessing accuracy. This fraction decreases monotonically even in
cases where the energy loss itself increases (e.g. LDC1U versus LDCR1U). None of the upwind cases
achieves a 5% or less energy loss, while two of the central differencing cases (LDC4C and LDCR3C)
satisfy this criterion.

Table II also reveals that the normalized global kinetic energy imbalance ranking (equation (7),
column (d)) is nearly the same as the ranking based on global error with respect to the benchmark
velocity field (equation (10), column (e)). This consistency is further demonstrated in Figure 4. There,
monotonic convergence to the benchmark velocity profiles is evident with refinement on uniform
meshes. Moreover, the relative accuracy implied by the deviation from the benchmark solution in
Figure 4 is consistent with the ranking implied by the percentage of energy loss inTable II. For

Figure 3. Mesh patterns starting from a uniform 20620 mesh, lid-driven cavity: (a) LDCR1U; (b) LDCR2U; (c) LDCR3U; (d)
LDCR3C
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example, LDCR3Cx- and y-velocity profiles are somewhat closer to the benchmark solution than
LDC3C profiles, consistent with the global error measures ofTable II.

Compared with upwind, the overhead for central differencing is a factor of two to three in CPU
time for a given mesh sizeNc (Table II). However, to reduce the error to the same level by increasing
Nc with upwind differencing is much more costly. For example, a 10% energy loss level
(IMBALg4 0�10) is realized with central differencing for a normalized CPU time of about 100 on a
uniform mesh (LDC3C) compared with a CPU time close to 10 using local refinement (LDCR2C).
With upwind differencing, the 10% error level requires more than 1000 CPU units (LDC4U) on a
uniform mesh.

A final observation is that local refinement is computationally efficient. For example, cases LDC2C
and LDCR2C have approximately the same number of computational cells (� 1600) and comparable
CPU times and iteration counts. However, the normalized energy loss (column (d),Table II) for the
former is nearly double that of the latter. Equivalently, a given level of accuracy can be realized with
lower computational effort using local refinement. Here cases LDC3C and LDCR2C show similar
normalized energy losses (about 10%), but the number of computational cells for the former is about
four times that of the latter and the CPU time advantage with local refinement is a factor of nine.
Efficiency benefits of local refinement are even greater when refining based on partially converged
solutions. Examples are given in column (g) ofTable II: for LDCR2C the CPU time is reduced by
about 20% (10�76 versus 12�8).

Table II. Lid-driven cavity results. Iteration counts and CPU times are normalized by values for the coarsest
uniform mesh with upwind differencing. Numbers in parentheses rank the solutions from most accurate (1) to
least accurate (7), for upwind and for central differencing independently. CPU time ratios in square brackets
(column (g)) were obtained using fully automated adaptive meshing starting from a coarse mesh, with error

estimators computed using partially converged solutions

Case j108 _

^Knum;gj

(equation (4))
(kg m2 s73)

j108 _

^K ref j

(jSHEARj,
equation (8))
(kg m2 s73)

IMBALg6 100
(equation (7))

(%)

DUe,g

(equation (10))
Iteration

count
ratio

CPU
time
ratio

(a) (b) (c) (d) (e) (f) (g)
LDC1U 3�90 9�43 41�3 (7) 0�71 (7) 1�00 1�00
LDC2U 3�89 12�0 32�3 (5) 0�42 (5) 2�92 4�85
LDC3U 2�90 13�6 21�3 (3) 0�27 (3) 10�5 59�2
LDC4U 1�83 14�7 12�4 (1) 0�19 (1) 40�1 1208

LDCR1U 3�93 12�1 32�5 (6) 0�49 (6) 1�55 2�00
LDCR2U 3�08 13�7 23�4 (4) 0�33 (4) 2�49 4�65
LDCR3U 2�18 14�9 14�7 (2) 0�23 (2) 4�16 16�03 [10�12]

LDC1C 2�82 8�85 31�9 (7) 0�47 (7) 2�85 2�85
LDC2C 2�21 11�2 19�7 (5) 0�14 (5) 6�78 11�4
LDC3C 1�23 12�9 9�60 (3) 0�036 (3) 18�8 106�9
LDC4C 0�51 14�2 3�63 (1) 0�00 (1) 55�8 1674

LDCR1C 2�27 11�2 20�2 (6) 0�22 (6) 3�81 4�91
LDCR2C 1�30 12�9 10�1 (4) 0�080 (4) 6�12 12�8 [10�76]
LDCR3C 0�60 14�1 4�25 (2) 0�031 (2) 10�6 45�7
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6.2. Backward-facing step

Refinement patterns for upwind and central differencing are displayed inFigure 5. Refinement is
concentrated adjacent to the inflow boundary, along the entry region of the upper wall and along the
separation streamline in the high-shear region. Again, different error estimators highlight different
flow features (not shown).

The location of the reattachment point generally moves downstream with improving numerical
accuracy. The benchmark solution yields a reattachment length of 4�30 hc, while Reference 15
reported a value of 4�35hc.

Global error estimates and computational effort are summarized inTable III. Here, normalization
of the numerical kinetic energy imbalance is less important than for the lid-driven cavity
configuration: the rate of kinetic energy supply varies little with mesh density or differencing scheme.

Figure 4. Normalized velocity profiles for lid-driven cavity: (a)x-velocity, seven upwind cases plus benchmark (‘exact’); (b)x-
velocity, seven central cases; (c)y-velocity, seven upwind cases plus benchmark (‘exact’); (d)y-velocity, seven central cases
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It still is appropriate to express the rate of numerical energy loss as a percentage of a reference rate to
establish a physically meaningful global convergence criterion. Two possibilities are reported in
Table III: normalization by the net influx of kinetic energy (column (e)) and normalization by the
physical rate of kinetic energy dissipation (viscous dissipation, column (f)). These two values are
very close to one another. In the limit of a grid-independent solution (no numerical losses of kinetic
energy) and withSHEAR� 0 and PRES� 0 the global energy balance (equation (4)) reduces to
FLUX�DISS� 0.

The normalized global kinetic energy loss (equation (7)) generally ranks the runs in the same order
as the global solution deviation (equation (10)). Departures of computed profiles from the benchmark
profiles likewise yield a consistent ranking (Figures 6 and 7: the x=hc� 3 station cuts through the
recirculation bubble, whilex=hc� 7 lies downstream of the reattachment point). An exception is
BFS1U versus BFSR1U. ThereUe,g increases slightly from BFS1U to BFSR1U, while the
normalized energy loss and convergence of velocity profiles suggest that the latter case is more
accurate. This discrepancy may result from the solution behaviour far downstream in the
computational domain.

For quiescent initial conditions the efficiency benefit of local refinement is less clear than for the
lid-driven cavity. The 2000-cell non-uniform meshes (BFSR1U and BFSR1C) yield global errors that
are smaller than those of the respective 1000-cell uniform meshes (BFS1U and BFS1C) and are
closer to the 4000-cell uniform mesh values (BFS2U and BFS2C). Computational times for the 2000-
cell non-uniform meshes are less than half those of the corresponding 4000-cell uniform meshes. The

Figure 5. Mesh patterns starting from a regular 100610 mesh, backward-facing step. Only the upstream portion of the mesh is
shown for clarity (tox=hc�7). (a) BFS1U; (b) BFSR1U; (c) BFSR2U; (d) BFSR2C
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4000-cell non-uniform meshes have global errors that are as much as 25% smaller than those of the
4000-cell uniform meshes, while CPU times for the former are close to double those of the latter. The
benefits of local refinement are more apparent with an initially coarse mesh and partially converged
solutions (not shown).

7. DISCUSSION

The utility of kinetic-energy-imbalance-based solution-adaptive local refinement has been
demonstrated for a shear-driven flow and a pressure driven flow. Key results are threefold. 1)
Cell-level imbalances provide a readily computed measure of local solution accuracy from a single-
mesh computation. The kinetic energy imbalance emphasizes the energy-containing regions of the
flow and is generally consistent with a gradient-based error estimator. 2) The normalized global

Figure 6. Normalizedx- andy-velocity component profiles atx=hc�3 for backward-facing step: (a)Ux, upwind cases plus
benchmark (‘exact’); (b)Ux, central cases; (c)Uy upwind cases plus benchmark (‘exact’); (d)Uy, central cases
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imbalance provides an indication of overall solution accuracy and a natural criterion for halting
refinement. 3) Local solution-adaptive refinement is a cost-effective approach to improved solution
accuracy compared with uniform refinement. A combination of local refinement and higher-order
differencing appears to be more effective than either strategy by itself. For steady flow problems,
initially coarse meshes with refinement based on partially converged solutions further improve
efficiency.

An outstanding issue is the correlation between the proposed error estimator and specific
engineering quantities of interest. In IC engine combustion, for example, the computed burn rate
approaches its asymptotic converged value as the kinetic energy imbalance approaches zero.
However, the quantitative correlation between these two quantities cannot be establisheda priori.
Also, the correlation will be different for different engineering quantities. For example, the

Figure 7. Normalizedx- andy-velocity component profiles atx=hc�7 for the backward-facing step: (a)Ux, upwind cases plus
benchmark (‘exact’); (b)Ux, central cases; (c)Uy upwind cases plus benchmark (‘exact’); (d)Uy central cases
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quantitative correlation between computed drag coefficient convergence and kinetic energy
imbalance in a vehicle aerodynamics application will be different from the burn rate/kinetic energy
imbalance correlation of the previous example. The concentration of high-error cells in local mesh
regions (e.g. Plate 1(a)) exacerbates the problem of establishing quantitative correlations. This
highlights an important advantage of classic grid refinement and the GCI4 over the current approach:
the former can be applied directly to any engineering quantity of interest without the requirement to
demonstrate or infer correlations.

On the other hand, classic grid refinement methodology requires a separate estimate of the
‘benchmark’ solution. If the finest grid solution available is adopted as the benchmark, then the order
of convergence,p, is obscured, especially for the finer grid cases. Deviation from the benchmark
DUe,g is equal to zero, by definition, for the finest grid solution. Thusn solutions computed on meshes
of different densities yieldn7 1 values from which one can verify the convergence orderp.
Alternatively, the benchmark solution might be estimated using Richardson extrapolation. However,
this requires that one lie in the asymptotic range of convergence, which is what one is trying to verify
via the grid refinement exercise. By contrast, the benchmark value of the imbalance is knowna
priori : it is identically equal to zero. This distinction can be illustrated using the data ofTable III.
There the imbalance-based error exhibits the expected asymptotic ratio-of-four decrease with each
succesive grid doubling for a second-order method (p� 2) in the BFSnC sequence (column (e): 7�23,
1�93, 0�50, 0�13). The departure-from-the benchmark error sequence for the same problem (column
(g)) yields the sequence 0�22, 0�060, 0�033, 0�00: the order of convergence is obscured for the finer
meshes as a result of having adopted the finest mesh solution as the benchmark.

No formal proofs of monotonicity of imbalances with mesh refinement or with higher-order spatial
discretization are available for the present scheme. Present results and earlier work on realistic three-
dimensional time-dependent turbulent flows3,13 demonstrated monotonic convergence of imbalances
in mean kinetic energy, turbulence kinetic energy and angular momentum. In any case the rigour of
more formal approaches is lost when one lies outside their asymptotic radius of convergence; this is
the regime where one is normally forced to operate in applications.

Several variants of the present strategy can be envisioned. Rather than tagging a specified fraction

of cells,f, for refinement (equation (6)), one might find the maximum error over all cellsj

_

^Knum, c maxj,

and refine those cells for whichj _^Knum; cj > bj
_

^Knum; c maxj, where 04b4 1. Alternatively, one might
split cells only in specified directions using a vector-valued error estimator containing directional
information. Efficiency considerations become particularly important in three spatial dimensions.
There, refining just 15% of all computational cells doubles the number of cells at each refinement
level (equation (5) and (6):Rc� 2 for D� 3 andf� 0�15).

Benefits of local refinement are anticipated to be greater in time-dependent problems compared
with the present steady flow cases. For the transient port and cylinder with moving piston and valves,
for example, the present adaptive meshing strategy is being explored to maintain resolution where it
is needed through induction (characterized by steep velocity gradients in annular jets issuing from the
valve curtain area), compression (characterized by large variations in cell volume, skewness and
aspect ratio in the absence of refinement) and combustion (characterized by steep temperature and
concentration gradients). In time-dependent problems, mesh coarsening (local unrefinement) is
needed. Unrefinement based on the present kinetic energy imbalance concept has been implemented,
with the important restriction that the mesh can become no coarser than the initial mesh; that is, the
original parent cells cannot be collapsed. Thus an intelligent choice of initial mesh, with careful
consideration of its deformation in moving boundary problems, is imperative. Transient
refinement=unrefinement results for benchmark problems including mesh deformation will be the
subject of a future paper.
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Numerical dissipation of kinetic energy can be of the same order as physical dissipation (viscous
dissipation) in complex three-dimensional turbulent flow calculations.3 In applications including in-
cylinder flows, constraints such as the total number of cells or projected CPU time (cost), rather than
the desired error level, are likely to limit the level of refinement that is practicable. Rapidly
improving computing cost-to-performance ratios coupled with solution-adaptive mesh refinement and
higher-order numerical schemes should eventually reduce numerical inaccuracy in three-dimensional
time-dependent CFD to the point where the focus can return to physical modelling.
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